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Abstract 

A frequently encountered problem is the determination 
of whether one model gives a significantly better fit to a 
set of data than another. This may be studied by 
examining the correlation between the differences in the 
predictions of the models and the corresponding 
differences between the observed data and the 
arithmetic means of the predictions. The existence and 
precision of such correlations may be determined using 
the techniques of linear regression. The analysis has 
been applied to a neutron powder diffraction study of 
the defect structure of nonstoichiometric lithium 
tantalate. 

Introduction 

It happens frequently in crystallographic refinement 
that it is necessary to decide whether one model 
represents a 'significantly' better fit to the observed data 
than another. The special case in which the parameters 
of one model are a subset of the parameters of the other 
was addressed by Hamilton (1965), who devised a test 
that may be applied to the ratio of the weighted R 
indices resulting from refining the two models. This test 
is derived from statistical tests based on the F 
distribution (Hamilton, 1964), which is a probability 
distribution function appropriate to the ratio of two 
independent random variables each of which has a X 2 
distribution. This test is extremely useful for deciding 
whether the data support a hypothesis that atoms have 
some nonideal configuration or whether there is 
evidence for disorder of atomic species at a particular 
site. In many cases, however, one model is not a subset 
of the other, and it may not be possible to define two 
independent X 2 statistics. Such a case arose in a recent 
study (Santoro, Roth & Austin, 1982) of nonstoichio- 
metric lithium tantalate by neutron powder diffraction. 
This paper describes a statistical test that may be used 
whether or not the statistics are independent and then 
applies it to the LiTaO 3 problem. 

Statistical analysis 

A general test for comparing two models was intro- 
duced by Williams & Kloot (1953). We follow here the 

analysis given by Himmelblau (1970). It involves 
determining the slope, 2, of the regression line Z = 2X, 
where Z i = Yoi - ½(Ylci + Y2ci), and X t = ( Y l c i -  Y2ci). 
Here Y~ and Y2et are the predicted values of Y at point 
i for model 1 and model 2 respectively. Thus the test 
seeks a correlation between the differences in the 
predictions of the models and the differences between 
the observed values and the arithmetic means of the 
predictions. Suppose that model 1 is the correct one, 
and the measurements have been made with great 
precision, so that Yol = Yl~i. Then Z l = ½(Y~l - Y2ct), 
and 2 = ½. A positive slope for the regression line 
therefore favors model 1, and a negative slope favors 
model 2. When neither model is a perfect fit and the 
observations are subject to random fluctuations, 121 
will, in general, be less than ½. The hypothesis that the 
two models represent equally good fits to the data may 
be tested by establishing a confidence interval for 2 and 
determing whether it does or does not include 2 = 0. 

Although this test is applicable to a large variety of 
problems, the case of immediate interest is the 
comparison of two models for the defect structure of 
nonstoichiometric lithium tantalate (Santoro et al., 
1982) refined to neutron powder diffraction data by the 
method developed by Rietveld (1969). In this case the 
observations are the numbers of counts in an interval of 
time at a given value of the scattering angle, 20. These 
are random events and are therefore subject to 
statistical fluctuations having a Poisson distribution. 
Each observation, therefore, has an estimated variance 
equal to the total count and an estimated standard 
deviation equal to the square root of the count. The 
quantities Zt should therefore be expressed as fractions 
of the standard deviations of the observations, Yo~. The 
expression for Z t then becomes Z t = [Yol - ½(Ylel + 
Y2et)]/Ylo~ 2. The slope of the regression line is the value 
of 2 that minimizes the quantity 

N 

f (2 )  = ~ (Z t - 2Xt) 2. 
t=1  

which is 

N , N 

i = I  i = I  
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The estimated variance of 2 is 

a, t̂2 __ [ ~i=, Z~-f~2 ~x~l/[(N-t=, 1)t=,~S~] 

and the (1 - a )  per cent confidence interval is ~ + 
#aTl_,a2, where T1_,~/2 is the value such that 

T 

f O(t,v) dt = 1 - a / 2  
- - 0 0  

and O(t,v) is the density function for Student's t 
distribution with v -- ( N -  I) degrees of freedom. 

Comparison of models for lithium tantalate 

Santoro, Roth & Austin (1982) refined two models, one 
a lithium-vacancy model proposed by Lerner, Legras & 
Dumas (1968) and the other a stacking-fault model 
proposed by Nassau & Lines (1970), to a neutron 
diffraction powder pattern of a lithium tantalate sample 
with the lithium-deficient composition 9 LiTaO 3 :Ta20 s. 
The weighted R indices, R w, for the two models were 
0.0950 and 0.0934, respectively, so the model of 
Nassau & Lines would appear to be preferred. We 
must, however, address the question 'Is the better fit of 
the model of Nassau & Lines significant, or is the 
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difference no greater than would normally be observed 
by chance alone?' 

There are 199 points in the powder pattern for which 
the difference between the predictions of the two models 
is at least ten counts. The 95% confidence interval for 
the slope of the regression line for those points is 
-0 .01877  + 0.01069. Thus the hypothesis that the two 
models give equally good fits to the data can be rejected 
at the 5% confidence level, and the model of Nassau & 
Lines is a significantly better representation of the data. 
Fig. I shows a scatter plot of the subset of the data that 
was used in the analysis. The largest differences can be 
seen to be concentrated in the upper left quadrant. 

It must be emphasized that this comparison does not 
prove that either model is the correct one. It merely 
shows that the difference between the fits of the two 
models is improbable and is therefore unlikely to be 
observed because of chance alone. To infer that the 
better-fitting model is in fact the correct one requires 
both that it include all relevant sources of possible bias 
and that there is no third model that is equally 
consistent with the constraints of physics and 
chemistry and fits the data even better. In the case of 
Rietveld powder refinement, as in the example given 
here, it is required at least that the data have been 
carefully examined for such sources of systematic error 
as preferred orientation, that individual, resolved peaks 
have been checked to verify the adequacy of the peak 
shape function, and that an appropriate background 
function has been included as a set of refined 
parameters in the model. 
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Fig. 1. A scatter plot of the regression of the difference between 
the observed data and the mean of" two models for nonstoichio- 
metric LiTaO 3 against the difference between the models. 
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